
'
&

$
%

A Graph Transformation Approach to
Architectural Run-Time Reconfiguration

Michel Wermelinger Antónia Lopes José Luiz Fiadeiro

Laboratório de Modelos e Arquitecturas Computacionais
Faculdade de Ciências da Universidade de Lisboa

Campo Grande, 1700 Lisboa, Portugal



econfiguration Introduction'
&

$
%

Introduction

Motivation

� systems evolve: new requirements or new environment (failures,
transient interactions)

� for safety or economical reasons, some systems cannot be shut
off to be changed

� domain with some interest in SA community but little formal work

bMAC 1.4.1 2001/2/9 FFSE



econfiguration Introduction'
&

$
%

Issues

time before or at run-time (dynamic reconfiguration)

source user (ad-hoc); topology or state (programmed)

operations add/delete components/connections; query
topology/state

constraints structural integrity; state consistency; application
invariants

specification architecture description, modification, constraint
languages

management explicit/centralised (configuration manager);
implicit/distributed (self-organisation)

bMAC 1.4.1 2001/2/9 FFSE



econfiguration Introduction'
&

$
%

Related Work

� Distributed Systems, Mobile Computing, Software Architecture

� not at architectural level

� not arbitrary reconfigurations

� low-level behaviour specification (process calculi, term rewriting,
etc.)

� interaction between computation and reconfiguration: complex,
implicit, or blurred

� tool support, in particular automated analysis

bMAC 1.4.1 2001/2/9 FFSE



econfiguration Introduction'
&

$
%

Approach

� use parallel program design language with state for computations

� category of programs with superposition

� architecture = categorical diagram; system = colimit

� architecture = graph; reconfiguration = rewriting

� apply algebraic graph transformation

– uses category theory

– much work done on it

– double-pushout approach avoids side-effects

� conditional rules to add/remove components/connectors

� typed graphs for reconfiguration-invariant architectural type

bMAC 1.4.1 2001/2/9 FFSE



econfiguration Conclusion'
&

$
%

Advantages

� expressive, simple, uniform, explicit, algebraic framework to
specify dynamic reconfiguration

� diagrams represent connectors, architectures, reconfiguration
rules, and architectural types in graphical yet mathematical
rigorous way

� colimits to obtain connector semantics, systems, reconfiguration
steps and to relate explicitly computation and reconfiguration

� simple higher level program design language with intuitive state
representation

� handle state transfer and removal/addition in correct state

� simple, declarative constraints on possible interactions

bMAC 1.4.1 2001/2/9 FFSE



econfiguration Conclusion'
&

$
%

Position

� run-time reconfiguration is an important issue for current
software systems

� need formal approach at high level of abstraction to support
design and analysis

� categorical framework allows to relate heterogeneous
formalisms

bMAC 1.0 2001/3/10 FFSE


