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Introduction

Motivation

� systems evolve: new requirements or new environment (failures,
transient interactions)

� for safety or economical reasons, some systems cannot be shut
off to be changed

� domain with some interest in SA community but little formal work
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Issues

time before or at run-time (dynamic reconfiguration)

source user (ad-hoc); topology or state (programmed)

operations add/delete components/connections; query
topology/state

constraints structural integrity; state consistency; application
invariants

specification architecture description, modification, constraint
languages

management explicit/centralised (configuration manager);
implicit/distributed (self-organisation)
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Related Work

� Distributed Systems, Mobile Computing, Software Architecture

� not at architectural level

� not arbitrary reconfigurations

� low-level behaviour specification (process calculi, term rewriting,
etc.)

� interaction between computation and reconfiguration: complex,
implicit, or blurred

� tool support, in particular automated analysis
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Approach

� use parallel program design language with state for computations

� category of programs with superposition

� architecture = categorical diagram; system = colimit

� architecture = graph; reconfiguration = rewriting

� apply algebraic graph transformation

– uses category theory

– much work done on it

– double-pushout approach avoids side-effects

� conditional rules to add/remove components/connectors

� typed graphs for reconfiguration-invariant architectural type
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Advantages

� expressive, simple, uniform, explicit, algebraic framework to
specify dynamic reconfiguration

� diagrams represent connectors, architectures, reconfiguration
rules, and architectural types in graphical yet mathematical
rigorous way

� colimits to obtain connector semantics, systems, reconfiguration
steps and to relate explicitly computation and reconfiguration

� simple higher level program design language with intuitive state
representation

� handle state transfer and removal/addition in correct state

� simple, declarative constraints on possible interactions
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Position

� run-time reconfiguration is an important issue for current
software systems

� need formal approach at high level of abstraction to support
design and analysis

� categorical framework allows to relate heterogeneous
formalisms
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